В корзине 0 товаров на сумму 0

Производство Алюминия

Продолжаем перечислять достижения человечества, делающие нашу цивилизацию такой, какая есть.
И снова без преувеличения одним из самых важных процессов, создающих облик общества, является…
Производство алюминия.

Алюминий – лёгкий металл, химически активный и невероятно распространённый. Какую бы каменюку вы не нашли, какую бы глину ни копнули – в её состав обязательно будет входить алюминий в виде тех или иных соединений. Его не просто много, а очень много. Но при этом обнаружили, «нашли» его, совсем недавно, каких-то полтора столетия назад, а использовать научились ещё позже. И первый выделенный алюминий стоил по весу, как золото.

Почему? Потому, что этот металл химически очень активный, легко соединяется с другими веществами и очень не любит из оных выделяться в чистом виде. А ещё он тугоплавкий – невероятно тугоплавкий для времени своего открытия, для его выделения требуется колоссальное количество энергии! Но даже выделенный, в виде «чушек» или проволоки, он… Не совсем чист. Поверхность чистого алюминия на воздухе моментально реагирует с кислородом и покрывается оксидной плёнкой – кою мы и можем наблюдать на любых алюминиевых изделиях.

Металл он лёгкий, при этом, как сказано, невероятно тугоплавкий. Что определяет широту его использования практически во всех сферах деятельности человека. А ещё имеет высокую электропроводность. В общем, куда ни плюнь, в какой прибор или в какое устройство ни ткни – везде найдёшь алюминий в том или ином виде. Например, в таком:

 

 

Применение алюминия

 

Этот «крылатый металл» нельзя получить плавлением руды в печи, как происходит, например, с железом. Процесс получения алюминия значительно сложнее и основан на использовании электричества огромной мощности – электролизе расплава руды. Поэтому алюминиевые заводы всегда строятся рядом с крупными источниками электроэнергии – чаще всего гидроэлектростанциями. 

Производство металла делится на три основных этапа:

- добыча бокситов – алюминий содержащей руды,

- их переработка в глинозем – оксид алюминия, и, наконец,

- получение чистого металла с использованием процесса электролиза – распада оксида алюминия на составные части под воздействием электрического тока. Из 4-5 тонн бокситов получается 2 тонны глинозема, из которого производят 1 тонну алюминия.

 

Бокситы
В мире существуют несколько видов алюминиевых руд, но основным сырьем для производства этого металла являются именно бокситы. Боксит считается качественным, если он содержит более 50% оксида алюминия.

 


Добыча бокситов.

 

Общие мировые подтвержденные запасы бокситов оцениваются в 18,6 миллиардов тонн. При нынешнем уровне добычи это обеспечит потребность человечества больше, чем на сто лет. 

Бокситы могут сильно отличаться друг от друга. По структуре они бывают твердые и плотные либо рыхлые и рассыпчатые. По цвету – как правило, кирпично-красные, рыжеватые или коричневые из-за примеси оксида железа. Но иногда встречаются руды желтого, темно-зеленого цвета и даже пестрые – с голубыми, красно-фиолетовыми или черными прожилками.

Около 90% мировых запасов бокситов сосредоточено в странах тропического и субтропического поясов, из них три четверти приходится на пять стран: Гвинею, Бразилию, Ямайку, Австралию и Индию. Больше всего их в маленькой Гвинее – 5,3 миллиарда тонн (28,4% мировых запасов), при этом они высокого качества, содержат минимальное количество примесей и залегают практически на поверхности.

Чаще всего добыча бокситов ведется открытым способом – специальной техникой руду «срезают» слой за слоем с поверхности земли и транспортируют для дальнейшей переработки. Однако в мире есть места, где алюминиевая руда залегает очень глубоко, и для ее добычи приходится строить шахты. Одна из самых глубоких шахт в мире «Черемуховская-Глубокая» находится в России, на Урале, ее глубина – 1550 метров.

 

Глинозём

Следующим этапом производственной цепочки является переработка бокситов в глинозем – оксид алюминия Al2O3, который представляет собой белый рассыпчатый порошок. Основной способ получения глинозема в мире - метод Байера, открытый более ста лет назад, но актуальный до сих пор – около 90% глинозема в мире производятся именно им. Этот способ весьма экономичен, но использовать его можно только при переработке высококачественных бокситов со сравнительно низким содержанием примесей. Кристаллическая гидроокись алюминия, входящая в состав боксита, хорошо растворяется при высокой температуре в растворе  едкого Натра (каустической щёлочи, NaOH) высокой концентрации, а при понижении температуры и концентрации раствора вновь кристаллизуется. Посторонние примеси, входящие в состав боксита (так называемый балласт), не переходят при этом в растворимую форму или перекристаллизовываются и выпадают в осадок до того, как происходит кристаллизация гидроокиси алюминия. Поэтому после растворения гидроокиси алюминия балласт легко может быть отделен – он называется красный шлам. 

 


Красный шлам

 

Это густая масса красно-бурого цвета, состоящая из соединений кремния, железа, титана и других элементов. Его складируют на тщательно изолированных территориях – шлам хранилищах, которые  обустраивают таким образом, чтобы содержащиеся в отходах щёлочи не проникали в грунтовые воды. Как только хранилище отрабатывает свой потенциал, территорию можно вернуть в первоначальный вид, покрыв её песком, золой или дёрном и посадив определённые виды деревьев и трав. На полное восстановление могут уйти годы, но в итоге местность можно вернуть в изначальное состояние.
Многие специалисты не считают красный шлам отходом, так как он может служить сырьем для переработки. Например, из него извлекают скандий для дальнейшего производства алюминиево-скандиевых сплавов. Скандий придает таким сплавам особую прочность, сферы использования – автомобиле- и ракетостроение, спортивная экипировка, производство электропроводов.
Также красный шлам может использоваться для производства чугуна, бетона, получения редкоземельных металлов.

Крупные частицы гидроксида алюминия легко отделяются от раствора фильтрованием, их промывают водой, высушивают и кальцинируют – то есть нагревают для удаления воды. Так получают глинозем.

 


Существует еще один, менее распространенный способ получения глинозема – метод спекания. Бокситы спекают с содой и известняком, те связывают кремнезем в нерастворимые в воде силикаты, которые легко отделить от глинозема. Этот способ требует больших затрат, чем способ Байера, но в то же время дает возможность перерабатывать бокситы с высоким содержанием примесей кремнезема.


Глинозем выступает непосредственным источником металла в процессе производства алюминия. Но для создания среды, в которой этот процесс будет происходить, необходим еще один компонент – криолит. 



Криолит

 

Это редкий минерал из группы природных фторидов состава Na3AlF6. Обычно он образует бесцветные, белые или дымчато-серые кристаллические скопления со стеклянным блеском, иногда – почти черные или красновато-коричневые. Криолит хрупкий и легко плавится.

Природных месторождений этого минерала крайне мало, поэтому в промышленности используется искусственный криолит. В современной металлургии его получают взаимодействием плавиковой кислоты с гидроксидом алюминия и содой.

 

Производство алюминия

Итак, мы добыли боксит, получили из него глинозем, запаслись криолитом. Все готово для последней стадии – электролизу расплава алюминия. Электролизный цех является сердцем алюминиевого завода и не похож на цеха других металлургических предприятий, производящих, например, чугун или сталь. Он состоит из нескольких прямоугольных корпусов, протяженность которых зачастую превышает 1 км. Внутри рядами установлены сотни электролизных ванн, последовательно подключенных массивными тоководами к электричеству. Напряжение на электродах каждой ванны всего 4-6 вольт, в то время как сила тока составляет 300 кА, 400 кА и более.

 

На производстве алюминия

В каждой ванне происходит процесс электролиза. Емкость ванны заполняется расплавленным криолитом, который создает электролитическую (токопроводящую) среду при температуре 950°С. Роль катода выполняет дно ванны, а анода – погружаемые в криолит угольные блоки длиной около 1,5 метров и шириной 0,5 метра - со стороны они выглядят, как впечатляющих размеров молоты.

Каждые полчаса при помощи автоматической системы подачи глинозема в ванну загружается новая порция сырья. Под воздействием электрического тока, связь между алюминием и кислородом разрывается, алюминий осаждается на дне ванны, образуя слой в 10-15 см, а кислород соединяется с углеродом, входящим в состав анодных блоков, и образует углекислый газ.

 

2Al2O3 + 3C = 4Al + 3CO2

 

Примерно раз в 2-4 суток алюминий извлекают из ванны при помощи вакуумных ковшей. В застывшей на поверхности ванны корке электролита пробивают отверстие, в которое опускают трубу. Жидкий алюминий по ней засасывается в ковш, из которого предварительно откачан воздух. В среднем, из одной ванны откачивается около 1 тонны металла, а в один ковш вмещается около 4 тонн расплавленного алюминия. Далее этот ковш отправляется в литейное производство.

При производстве каждой тонны алюминия выделяется 280 000 м3 газов. Поэтому каждый электролизер независимо от его конструкции оснащен системой газ сбора, которая улавливает выделяющиеся при электролизе газы и направляет их в систему газоочистки. Современные «сухие» системы газоочистки для улавливания вредных фтористых соединений используют ни что иное, как глинозем, поэтому перед тем как использоваться для производства алюминия, глинозем сначала участвует в очистке газов, которые образовались в процессе производства металла ранее.

Для процесса электролиза алюминия требуется огромное количество электроэнергии. Из-за этого алюминиевая промышленность «жмётся» к регионам с хорошим и даже избыточным снабжением дешёвой энергией. В России, например, 95% алюминиевых мощностей обеспечены гидрогене рацией. То есть далеко не каждое государство может позволить себе такую роскошь, как алюминиевая промышленность, и далеко не на каждом уровне технического развития цивилизация в целом могла себе её позволить.

 

 

 

Без таких монстров не было бы алюминиевой промышленности, не летали бы самолёты, А мы бы ездили на паровозах и топили кизяками!

 

1